The promoting effect of noble metal addition on niobia-supported cobalt catalysts

Abstract

The promoting effects of a noble metal (Pd, Pt, Rh) added to Co/Nb₂O₅ catalysts were studied by varying the Me/Co atomic ratios. Acid niobium was calcined to niobium pentoxide. The surface and bulk structures of the calcined materials were characterized by XPS and TPR techniques. The catalytic performance was obtained with CO hydrogenation. The addition of a noble metal promoted the reduction of Co³⁺ and Co²⁺ phases at the surface. XPS results revealed that Co²⁺ species are well dispersed as a thin layer around the niobium support together with Co₃O₄ crystallites islands. The Co₃O₄/Co²⁺ ratio depends on the surface area of the support. XPS measurements also revealed that PdO, Rh₂O₃ and PtO₂ are the main phases in the mono and bimetallic catalysts. The activity of the bimetallic catalysts increased and the stability was already attained. The selectivities towards C₅ and oxygenates increased with the addition of Rh up to an atomic ratio of 0.5 and decreased beyond that. This behavior is similar for both temperatures of reduction at 573 and 773 K.

Keywords: Niobia-supported cobalt catalysts; Noble metal addition

1. Introduction

Cobalt based catalysts have been frequently used in the Fischer–Tropsch synthesis. The nature of the support has a strong influence on the catalytic properties for the CO hydrogenation [1,2].

This reaction has also been studied on metal supported reducible oxides, like titanium and niobium oxides [3–7] and the main observation was that the product selectivity changed, depending on the reduction temperature and the metal loading. The niobia-supported catalysts showed a higher selectivity toward saturated hydrocarbons compared to the alumina supported ones, after reduction at high temperatures [5–7].

The important feature is that Nb₂O₅ in the presence of a metal presents a SMSI effect [8,9]. Silva et al. [5] showed that Co/Nb₂O₅ after reduction at 773 K presents a strong SMSI effect and that it is destroyed after oxidation in agreement with the literature [8,10]. In particu-
lar for the CO hydrogenation, Haller and Resasco [10], as well as Kunimori et al. [3], have shown that the SMSI effect is destroyed during the reaction itself, due to the presence of water. However, Silva et al. [5] and Frydman et al. [6] found that the activity was not completely reversed and that the selectivity was drastically modified, enhancing the longer carbon chains after high temperature of reduction. These results demonstrate strong interaction of cobalt with the support and its rearrangement, suggesting that new species promoted the sites which increase the hydrocarbons toward longer chains.

Now, the question is what happens when a second metal is added to Co/Nb2O5 catalysts? Noronha et al. [11] showed that the addition of copper to Pd/Nb2O5 diminished the SMSI effect. The addition of a noble metal can also change the cobalt properties [12–14]. Lapidus et al. [12] reported data of the CO hydrogenation with Ru, Pd and Pt added to Co/Al2O3 catalysts and found that they are also more selective in C3 hydrocarbons.

The main objective of this work is to determine the effect of the addition of a second metal to the Co/Nb2O5 catalysts and to understand better the surface properties of the metallic phases due to the interaction with the support by evaluating their performance in the CO hydrogenation reaction. Besides the reaction itself, the catalysts were characterized by XPS, TPR and DRS techniques.

2. Experimental

2.1. Preparation of the catalysts

Niobium pentoxide was obtained by calcination of niobium acid (CBMM) at two different temperatures: 873 K for 4 h, resulting in a crystalline form, T or TT, of niobium pentoxide (25 m2/g) and 823 K for 2 h (50 m2/g).

The catalysts were prepared by impregnation of cobalt, palladium and rhodium nitrates or platinum hexachloride on both supports, as described elsewhere [15–17]. The cobalt loading was 5% on Pd–Co and Pt–Co and different Me/Co atomic ratios. On the Rh–Co system the cobalt content was 2%, keeping atomic ratios of the same order as above. The following catalysts and their compositions are summarized in Table 1.

2.2. Characterization

TPR experiments were performed in a conventional apparatus, as described elsewhere [11], using mixtures of 1.73% H2/Ar and 2% O2/He, respectively. In addition, DRS measurements were carried out in the oxide or passivated form in a Cary 5 UV–DRS system. XPS measurements were performed using monochromatic Al Kα radiation. The Nb 3d = 206.4 eV of the support was used as reference.

Table 1

<table>
<thead>
<tr>
<th>Composition of the bimetallic catalysts</th>
<th>Pd wt.%</th>
<th>Co wt.%</th>
<th>Pd/Co ratio a</th>
<th>Pt wt.%</th>
<th>Co wt.%</th>
<th>Pt/Co ratio a</th>
<th>Rh wt.%</th>
<th>Co wt.%</th>
<th>Pd/Rh ratio a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>–</td>
<td>–</td>
<td>0.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2.1</td>
<td>2.0</td>
<td>0.53</td>
<td>0.5</td>
<td>5.0</td>
<td>0.03</td>
<td>0.3</td>
<td>2.0</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>5.0</td>
<td>0.17</td>
<td>–</td>
<td>5.0</td>
<td>–</td>
<td>0.6</td>
<td>1.9</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>5.0</td>
<td>–</td>
<td></td>
<td>5.0</td>
<td>–</td>
<td>0.7</td>
<td>1.8</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>1.9</td>
<td>2.3</td>
<td>1.9</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Atomic ratio.
2.3. Catalytic activity

The reaction was performed with Pt–Co and Rh–Co supported on Nb₂O₅ catalysts, after being treated at different reduction temperatures: 573 K (LTR) and 773 K (HTR). The following conditions were used in the microreactor, keeping conversions below 20%: reactant mixture of 4% He/H₂/CO (H₂/CO = 2); total pressure 0.1 MPa; temperature 533 K and time on stream of approximately 30 h. Data were taken every hour in the first 8 h and after running 25–30 h. Selectivities were obtained at isoconversion after attaining steady state condition.

3. Results and discussion

3.1. Reducibility of the bimetallic catalysts

The formation of a bimetallic system and the transformations occurring during the reduction were studied, using different temperature programmed techniques, like TPR and TPO. The states of the intermediate oxide forms as isolated or bimetallic and alloy species were analyzed by complementary techniques to achieve a real understanding of the effect of a second metal supported on niobium oxide, known as a reducible oxide at elevated temperatures.

The TPR profiles are displayed in Fig. 1. The monometallic catalysts of all series have a behavior of reduction which is similar to those presented in the literature [5,11,18]. Palladium oxide is reduced at room temperature (RT) to

![Fig. 1. (top) Reduction profiles of the Pd–Co niobia-supported catalysts. (a) Pd/Nb₂O₅; (b) PdₓCo₁₋ₓ/Nb₂O₅; (c) PdₓCo₁₋ₓ/Nb₂O₅; (d) 5%Co/Nb₂O₅ (middle) Reduction profiles of the Pt–Co niobia-supported catalysts. (a) Physical Mixture C₀ₓ/Nb₂O₅; (b) PtₓCo₁₋ₓ/Nb₂O₅; (c) Pt/Nb₂O₅; (bottom) Reduction profiles of the Rh–Co niobia-supported catalysts. (a) Co/Nb₂O₅; (b) RhₓCo₁₋ₓ/Nb₂O₅; (c) RhₓCo₁₋ₓ/Nb₂O₅; (d) RhₓCo₁₋ₓ/Nb₂O₅; (e) RhₓCo₁₋ₓ/Nb₂O₅; (f) Rh/Nb₂O₅.](image-url)
metallic palladium and displays one desorption peak at 341 K, which is attributed to the desorption of reversible hydrogen from the palladium surface and to the decomposition of palladium hydride [19]. In addition, H\textsubscript{2} consumption is also observed at elevated temperatures (473 K), in general attributed to a partial reduction of the support [20].

Rhodium supported catalyst (Rh/Nb\textsubscript{2}O\textsubscript{5}) profile shows a sharp peak at 367 K, suggesting a single reduction step of Rh3+ to Rh0, which is in good agreement with van't Blick on Rh/Al\textsubscript{2}O\textsubscript{3} [18]. It means that, after calcination, rhodium oxide is in the Rh\textsubscript{2}O\textsubscript{3} form. The Pt/Nb\textsubscript{2}O\textsubscript{5} profile is similar, showing a well defined peak at 411 K, indicating that it has only one Pt structure in the calcined form. DRS results show indeed the presence of Pt\textsubscript{0} at the surface [15].

Noteworthy is the reduction of Co/Nb\textsubscript{2}O\textsubscript{5} catalyst. For the 5% Co/Nb\textsubscript{2}O\textsubscript{5} catalyst, there are two main peaks at 680 and 781 K (Fig. 1a). Recently, Frydman et al. [17] reported the presence of both Co\textsubscript{3}O\textsubscript{4} particles and Co2+ species, probably linked to the support. Then, the H\textsubscript{2} consumption at 680 K could be attributed to the reduction of Co\textsubscript{3}O\textsubscript{4} particles and the peak around 781 K due to the reduction of Co2+ species. The profile of a physical mixture of Co\textsubscript{3}O\textsubscript{4} + Nb\textsubscript{2}O\textsubscript{5} and DRS spectra confirms that Co\textsubscript{3}O\textsubscript{4} is the main phase in the cobalt catalyst [15].

The TPR profiles of the bimetallic catalysts display quite different behaviors from the monometallics. The shapes and temperatures of reduction are dependent on the second metal added to cobalt. The profiles are not only a single superposition of the monometallic profiles, showing different temperatures of reduction peaks. The H\textsubscript{2} consumptions varied as a function of the metal added to cobalt.

Profiles of the Pd-Co/Nb\textsubscript{2}O\textsubscript{5} catalysts are shown in Fig. 1a for different Pd/Co ratios. They show typically three temperatures of reduction, namely at RT, 400 and around 700–725 K. These peaks are shifted to lower temperatures when compared to the Co/Nb\textsubscript{2}O\textsubscript{5} catalyst. It seems that the addition of palladium promotes the reduction of Co\textsubscript{3}O\textsubscript{4}.

The Pt–Co/Nb\textsubscript{2}O\textsubscript{5} and Rh–Co/Nb\textsubscript{2}O\textsubscript{5} profiles are displayed in Fig. 1b and Fig. 1c, for different Me/Co atomic ratios together with the monometallic catalysts. The reduction occurs at two different temperature ranges. The first one around 400 K, corresponding to the simultaneous reduction of Pt\textsubscript{0} or Rh\textsubscript{0} with Co\textsubscript{3}O\textsubscript{4} \rightarrow CoO. The second at elevated temperatures, presented only one broad peak between 600 and 800 K corresponding to Co2+ \rightarrow CoO reduction, shifted down 70 K when compared to the Co/Nb\textsubscript{2}O\textsubscript{5} catalyst. The band at 728 nm related to Co2+ disappeared from DRS spectra [15]. Thus, Pt0 promotes the reduction of Co\textsubscript{3}O\textsubscript{4} after low temperature (510 K), as shown in Fig. 1b. These profiles also reveal a bimetallic formation and a strong influence of metallic Pt and Rh on the reduction of cobalt oxide.

For the Pt–Co/Nb\textsubscript{2}O\textsubscript{5} and Rh–Co/Nb\textsubscript{2}O\textsubscript{5} catalysts, the hydrogen consumptions correspond exactly to the theoretical values and, thus, indicating full reduction. It is more complex for the Co/Nb\textsubscript{2}O\textsubscript{5} catalyst. In the 2% cobalt catalyst, we observed an excess of H\textsubscript{2} consumption of approximately 23% of H\textsubscript{2} above 623 K, due to the partial reduction of Nb\textsubscript{2}O\textsubscript{5} in contact with the metal.

Now, analyzing the H\textsubscript{2} consumption on bimetallic catalysts we have the following observations:

For the Pd–Co/Nb\textsubscript{2}O\textsubscript{5} catalysts, the H\textsubscript{2} consumption at RT is higher than the theoretical amount needed to reduce Pd\textsubscript{0} to Pd0. It is also higher in the region between 298–473 K where Co\textsubscript{3}O\textsubscript{4} reduces to CoO. Therefore, it seems that Pd0 promotes the reduction of Co\textsubscript{3}O\textsubscript{4} particles at lower temperatures. Magnetic measurements confirm that 3% of cobalt at RT and 12% after reduction at 473 K are in the metallic form [16]. However, the promoting effect of Pd0 decreases with higher cobalt loadings. Similar considera-
tions should be extended to the Pt–Co and Rh–Co catalyst for the temperature range between 340–430 K.

For Pd–Co, Pt–Co and Rh–Co catalysts, the amount of H\textsubscript{2} consumed in the high temperature range is higher than that necessary to reduce CoO and Co2+ to Co0. Magnetic measurements showed that, after reduction at 873 K, only Co0 is present. This was also verified by TPO for Pt–Co and Co/Nb\textsubscript{2}O\textsubscript{5} catalysts [15]. Therefore, this excess of hydrogen consumption can be ascribed to a partial reduction of the support, as it was seen for Co/Nb\textsubscript{2}O\textsubscript{5} catalyst. The behavior of the Rh–Co/Nb\textsubscript{2}O\textsubscript{5} catalyst was somewhat surprising, because the H\textsubscript{2} consumption exceeded extremely the stoichiometric value for the reduction of the oxides to the metallic phase. This excess decreases as rhodium content increases and disappears with rhodium alone.

3.2. X-Ray photoelectron spectroscopy

Figs. 2 and 3 show the XPS lineshapes of Co 2p spectra for Rh–Co/Nb\textsubscript{2}O\textsubscript{5}, Pd–Co/Nb\textsubscript{2}O\textsubscript{5} and Pt–Co/Nb\textsubscript{2}O\textsubscript{5} calcined catalysts, respectively.

For the Pd/Nb\textsubscript{2}O\textsubscript{5} and Pd\textsubscript{0.5}Co\textsubscript{0.5}/Nb\textsubscript{2}O\textsubscript{5} catalysts, the binding energies for the Pd 3d\textsubscript{3/2} peak were 337.0 and 336.9 eV, respectively.

![Fig. 2. XPS Co 2p spectra of the calcined Rh–Co/Nb\textsubscript{2}O\textsubscript{5} catalysts.](image)

![Fig. 3. XPS Co 2p spectra of the calcined Pd–Co/Nb\textsubscript{2}O\textsubscript{5} and Pt–Co/Nb\textsubscript{2}O\textsubscript{5} catalysts.](image)

(Table 2). According to the literature, these values correspond to the presence of PdO [21]. On the other hand, on the Rh–Co and Pt–Co catalysts, two peaks were observed for the Rh 3d\textsubscript{3/2} and Pt 4f\textsubscript{7/2} suggesting a partial reduction of both Rh\textsubscript{2}O\textsubscript{3} and PtO\textsubscript{2} by the X-ray beam.

In order to identify the cobalt species by XPS, the binding energy (BE) of Co 2p\textsubscript{1/2} peak and spin-orbit splitting values of reference compounds are listed in Table 2. The BE values found for the two different cobalt oxides (CoO

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Co 2p\textsubscript{1/2} (eV)</th>
<th>Rh 3d\textsubscript{3/2} (eV)</th>
<th>Pt 4f\textsubscript{7/2} (eV)</th>
<th>(\Delta E) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>337.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pd\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>336.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rh</td>
<td>-</td>
<td>308.6 (310.2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rh\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>308.7 (310.2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rh\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>308.5 (310.3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rh\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>308.6 (310.2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rh\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>308.9 (310.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pt</td>
<td>-</td>
<td>-</td>
<td>71.6</td>
<td>780.4</td>
</tr>
<tr>
<td>Pt\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>-</td>
<td>(75.1)</td>
<td>780.4</td>
</tr>
<tr>
<td>Co</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>780.5</td>
</tr>
<tr>
<td>Co\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>781.6</td>
</tr>
<tr>
<td>Co\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>779.9</td>
</tr>
<tr>
<td>CoO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>780.4</td>
</tr>
<tr>
<td>Co\textsubscript{0.5}Co\textsubscript{0.5}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>780.3</td>
</tr>
</tbody>
</table>
and Co3O4) are very similar and it does not allow a distinction between them. On the other hand, the secondary features (shake-up, spin-orbit splitting) of the spectra are different and can be used to distinguish them. On the Co3O4, the satellite is practically absent while CoO and CoNb2O6 show a strong satellite peak. Furthermore, the energy separation between the Co 2p3/2 peak and the Co 2p1/2 is close to 15.2 eV for Co3O4 but substantially larger for pure Co2+ oxides like CoO (15.9 eV), as shown in Table 2.

The Co 2p lineshapes of the Co/Nb2O5 catalysts suggest the presence of different Co species on the surface. The broadening of the Co 2p3/2 line and the spin-orbit splitting values indicate that the main cobalt species on both Co/Nb2O5 catalysts was Co3O4.

Several cobalt species have been detected in the precursors of supported cobalt catalysts [2,22,23]. The case of alumina-supported cobalt has been well described. At least, three different cobalt species have been identified: Co3O4 particles, Co2+ species and CoAl2O4, a surface compound with the spinel structure. In addition, the fraction of each phase can vary with cobalt loading. Thus, the amount of Co3O4 particles increases at higher cobalt loading [23]. Ho et al. [22] used XPS to characterize the state of cobalt in a series of Co/TiO2 catalysts with different cobalt contents. They showed that the cobalt phase was primarily present as a highly dispersed surface cobalt species in the 0.5 and 1.0 wt.-% Co/TiO2 samples. By increasing the amount of cobalt, discrete Co3O4 particles were formed, in addition to Co2+ species.

Therefore, our results are in good agreement with the model proposed in the literature. In such a model, a Co/Nb2O5 catalyst with a support having a low surface area would show a higher amount of Co3O4 particles. This can explain the similar fraction of Co3O4 particles on both Co/Nb2O5 catalysts with different cobalt loadings.

The Co 2p XPS spectra of the bimetallic catalysts also suggest the presence of different cobalt species (Fig. 2). In the case of Rh–Co/Nb2O5 catalysts, an experimental procedure, described elsewhere [17], was used to resolve the Co 2p lineshapes of the catalysts into contributions from Co3O4 and Co2+ features. The Co 2p spectrum of the catalysts was compared to a Co 2p spectrum of pure Co3O4. The difference between these two spectra was then compared to a Co 2p spectrum of pure CoNb2O6. It was clear that the difference spectrum was essentially identical to the CoNb2O6 reference spectrum meaning that in all catalysts, the Co 2p spectra were well fit by a simple superposition of Co3O4 and Co2+ (specially CoNb2O6) features. Since, the lineshapes of other Co2+ oxides like CoO are very similar to that of CoNb2O6, we could not definitively determine whether the Co2+ species detected on the supported catalysts is Co niobate or another Co2+ oxide.

From the experimental XPS intensity ratios for Co/Nb, Rh/Nb and Rh/Co, it was seen that Rh is surface-enriched relative to Co, since, the Rh/Co surface atomic ratios are larger than the bulk ratios by up to a factor of 2 [17]. Through XPS intensities, several model structures were postulated to represent the surface of the calcined bimetallic catalysts and to rule out others. The model that best described the experimental XPS intensities considered a Co2+ surface phase covering the surface of the Nb2O5 particles in the spaces between bilayer islands of Rh2O3 on top of Co3O4. The amount of Co in the Co2+ phase was very small, so that 78–90 wt.-% of the total Co was present in the Co3O4 phase.

On the Pd–Co/Nb2O5 catalyst, the XPS analysis also revealed the presence of Co3O4 particles and a Co2+ surface phase (Fig. 3) [16]. The Co 2p lineshape of the Pd–Co3O4/Nb2O5 bimetallic catalyst showed a Co 2p3/2 peak at 781.3 eV, a strong shake up satellite around 786 eV and a spin-orbit coupling of 16.1 eV suggesting that the fraction of the Co2+ surface phase was quite pronounced.

The TPR and XPS results allowed us to postulate a model which represents these
bimetallic catalysts. From the TPR profiles of the Pd–Co/Nb$_2$O$_5$ catalysts, it was seen that the presence of palladium promoted not only the reduction of Co$_3$O$_4$ particles but also the cobalt surface phase, represented by the second TPR peak. These results can be explained by the presence of the palladium oxide particles spread over the Co$^{3+}$ layer or interfaced with Co$_3$O$_4$. The same model can be proposed for the Pt–Co catalysts, since, similar TPR and XPS results were obtained.

3.3. CO hydrogenation

Figs. 4 and 5 show the rate of CO conversion as a function of time for all Rh–CO and Pt–CO catalysts reduced at 573 and 773 K. The steady state was obtained very quickly for the bimetal-
lic catalysts already after 8 h. The activity of Rh/Nb$_2$O$_3$ was 3 fold higher than for Co/Nb$_2$O$_3$ after LTR. The activities decreased with the increase of the temperature of reduction and increases with the addition of a second metal. No significant deactivation was observed on the bimetallic catalysts, only the initial activity of Rh/Nb$_2$O$_3$ catalyst decays drastically, but stabilizes after 8 h.

The effect of the temperature of reduction was significant for the monometallics. Comparing the activities after LTR and HTR the decay was 7 fold for Co/Nb$_2$O$_3$ while for Rh/Nb$_2$O$_3$ it was only 1.5. In order to verify the SMSI effect, we checked its reversibility by performing the reaction after HTR and then after a sequence of oxidation at 673 K and reduction at LTR. Results show, in accordance with former data [5,6], that the reversibility of the SMSI effect on the Co/Nb$_2$O$_3$ is only partially restored, however, it was completely reverted on Rh/Nb$_2$O$_3$, in agreement with Kunimori's observations [3].

The addition of Pt to Co/Nb$_2$O$_3$, as displayed in Fig. 5 increases the activity that decays drastically after HTR. This is expected because Pt favors the spillover of H$_2$ neighborhood of the metals [23], promoting reduction of cobalt. Unfortunately, after the active bimetallic species are not present.

On the contrary, the effect of the reduction temperature on the bimetallic catalyst Rh$_2$O$_3$ was rather weak in the CO conversion. The reaction rate is approximately of the same order at LTR and HTR. We proposed from XPS data a model system assuming that rhodium is dispersed over Co$_3$O$_4$ islands and on dispersed Co$_{2+}$ species covering the support. Therefore, after reduction the surface of the bimetallic system is not substantially modified, and these sites, even if some alteration occurs with respect to the initial state, are able to recover a permanent equilibrium state with time on stream.

3.4. Product selectivity

The product selectivity obtained at isoconversion varied with the addition of a second metal and with the reduction temperature, as presented in Table 3. In Table 3 are given the oxygenated products, namely ethanol, isopropanol, propanol and butanol together with the selectivities of C$_2$--4/ C$_1$ ratio and CO$_2$.

Noteworthy are the behaviors of the CH$_4$ and C$_5$ selectivities with the reduction temperature and the rhodium content added to cobalt. While at LTR the selectivity of C$_1$ on Co/Nb$_2$O$_3$ is high and C$_5$ is low, this situation is reversed after HTR. These results show strong interaction of cobalt with the support and its rearrangement, suggesting that new species promoted the sites which increase the hydrocarbons towards longer chains [6,12].

Results reported in [5] have shown that the selectivity changes with time on stream. The selectivity towards C$_5$ increases significantly during the first 8 h on stream before stabilizing for more than 50 h. Therefore, the reaction modifies the nature of the sites during the activation with time on stream. Lee and Bartholomew [24] proposed mechanisms involv-
ing the formation of an intermediate (CH$_3$O) or formiate methoxy species, on different sites of the metal, in the presence of the support, due to the spillover of H$_2$ and CO over the support. This model is consistent for catalysts with low cobalt loading which contains a large fraction of aluminates or Co$^{2+}$ species dispersed over the support and which are unable to dissociate CO and H$_2$.

Nevertheless, the selectivity on Rh/Nb$_2$O$_5$ is different, presenting large molecules of olefins and alcohols. Iizuka et al. [25] reported the formation of such products on a Rh/Al$_2$O$_3$ catalyst.

For bimetallic catalysts, by increasing the Rh content, C$_4$ and C$_1^+$ selectivities attained minimum and maximum values, respectively, at a Co$/$(Rh + Co) ratio of about 0.5. Methane was low while C$_4^+$ was enhanced by a factor 6-7, together with formation of oxygenates due to the presence of rhodium. The C$_4^+$ products increase markedly with the increase of Rh, attaining a maximum selectivity of ca. 70% and decrease with higher contents, as shown in Fig. 6. The same behavior is seen for C$_4^+$/C$_4$ ratio and CO$_2$ selectivities after HTR. These results are in good agreement with Iglesia et al. [26] on Ru-Co/Al$_2$O$_3$ catalyst. They obtained, at similar conditions, 85% of C$_4^+$ products, rather close to our results. With respect to the formation of alcohols, it attains a maximum with the addition of small amounts of Rh in the bimetallic catalyst but decreases to a minimum around the ratio 0.5. This shows synergetic effects of Rh in the presence of Co. In the present case, the selectivity changed drastically. On the contrary, van't Blik [19] did not observe marked changes on selectivity for Rh-Co supported on Al$_2$O$_3$ and TiO$_2$ in the CO/H$_2$ reaction at 523 K.

Lee et al. [27] suggested that rhodium in the ionic state (Rh$^{1+}$) favors the formation of methanol while Rh0 favors the formation of ethanol. However, they demonstrated that Co-Rh particles after reduction were enriched with Co and that rhodium initially present as Rh0 is oxidized due to CO adsorption. The Rh-Rh bond breaks, forming carbonyls (Rh(CO)$_2$), in which Rh is in the ionic state Rh$^{1+}$. Our results are consistent with the conclusion of Lee et al. Therefore, with increasing Rh0 at the surface, during CO adsorption it provides Rh$^{1+}$, favoring the formation of oxygenated compounds. Nevertheless, the CO on platinum particles is basically adsorbed in the linear form [13], which explains the lower selectivity towards the oxygenated products in Pt-Co/Nb$_2$O$_5$.

We try to explain this selectivity behavior on the basis of our TPR and XPS results discussed above. The surface model presented by Frydman et al. [17] suggests schematically the presence of Co$^{2+}$ species covering practically the whole niobium oxide surface as a thin and well-dispersed layer, together with isolated islands of Co$_2$O$_4$ crystals covered with rhodium particles. As shown in Fig. 6, the selectivity is a function of Rh added to Co and present similar shapes after LTR and HTR. The TPR results suggest an easy reduction of the supported phase, together with a small fraction of the support. After LTR, an important amount is consumed at lower tem-

![Fig. 6. Product selectivities of C$_4^+$ and C$_4$ as a function of cobalt atomic ratio. (o) Rh-Co: C$_4^+$ after LTR; (a) Rh-Co: C$_4^+$ after HTR; (c) Rh-Co: C$_4$ after HTR; (v) Pt-Co: C$_4^+$ after LTR; (y) Pt-Co: C$_4^+$ after HTR; (m) Pt-Co: C$_4^+$ after LTR; (c) Pt-Co: C$_4^+$ after HTR.](image-url)
peratures on the bimetallic catalysts whereas on Co/Nb₂O₅ alone it is rather limited. Moreover, the selectivity towards C₄ is well increased over the Co²⁺ surface layer covering the support, being less dependent or the reduction temperature. Thus, the Co²⁺ species play a preferential role over niobium surfaces which corroborates with the proposed model of Lee et al. [27]. The presence of Rh⁰ (MeO) helps to reduce these Co²⁺ species and CoO₂⁺ particles at LTR and HTR. Therefore, during the reaction the reduced particles can easily be transformed to Rh⁺ and Co⁺ in the bimetallic catalysts, which are potential sites for the methylene insertion, as well as the CO insertion to account for oxygenates and C₄ products. However, at higher content of rhodium, larger particles may occur decreasing the efficiency of formation of these ionic species due to a better organization of both Rh and Co particles in the bimetallic system.

4. Conclusions

(1) The addition of a noble metal to the Co/Nb₂O₅ catalyst promoted pronounced changes in the reduction of cobalt. It helps to reduce the Co²⁺ and mainly the Co³⁺ species of CoO₂⁺.

(2) XPS results made possible to confirm that the Co²⁺ species are well dispersed on a thin layer around the niobium oxide together with isolated CoO₂⁺ crystallites. The CoO₂⁺/Co²⁺ ratio depends on the surface area of the support. It has been shown that the noble metals are well dispersed over both CoO₂⁺ and Co²⁺ species. In summary, CoO₂⁺, Co²⁺ as well as PdO, Rh₂O₃, and PtO₂ are the main phases identified.

(3) The CO hydrogenation performed at two different reduction temperatures showed good stability for bimetallic catalysts, held constant up to 50 h with time on stream.

(4) The CO hydrogenation showed that the addition of Rh to Co/Nb₂O₅ in different amounts increased the C₄ hydrocarbons and the formation of oxygenated compounds after 573 and 773 K. However, they attained maximum yields around an atomic ratio of 0.5.

(5) On the basis of XPS, TPR and CO hydrogenation data, we have a good proposal for a model system. The Co²⁺ species are well dispersed as a thin layer at the surface and the noble metal is also well dispersed over the Co₂⁺ species and CoO₅ islands, promoting their reduction. Therefore, during the reaction, CO promotes the ionic state of Me⁺ and Co₄⁺ forming sites for the insertion of methylene and CO to account for the growth of carbon chains and oxygenates. However, with increasing loading of noble metal it induces agglomeration of the particles, blocking the ionic sites.

Acknowledgements

We acknowledge CNPq, Pronac and Finep for the financial support of this work.

References